• @BlameThePeacock
      link
      English
      4711 days ago

      There are materials possible that will completely change the world.

      Theres probably a room temperature superconductor for example.

      The number of possibilities is effectively infinite though, since its not just which atoms, but also how they’re arranged.

      • @[email protected]
        link
        fedilink
        1411 days ago

        Theres probably a room temperature superconductor for example.

        I thought that one was a no go? Did I miss more news?

          • @[email protected]
            link
            fedilink
            1010 days ago

            Even just getting above the boiling temp of liquid nitrogen is a really big deal. Liquid helium is something we will eventually run out of and is largely dependent on fossil fuel extraction to be collected. Helium can’t be recaptured after it escapes an open loop cooling system.

            LN2 is so much cheaper to run and it’s sustainable. We’ll never run out of Nitrogen so long as there’s power to cool it. LN2 is cheaper than craft beer.

            • @[email protected]
              link
              fedilink
              110 days ago

              I wonder if progress will be slow and steady until we finally get there or if it will be a huge jump past the finish line like there was in the 80s. Either way, I don’t expect to see practical applications outside of the lab in my lifetime…but it’s really fun to watch the science advanced, even if it is all over my head

          • @[email protected]
            link
            fedilink
            3
            edit-2
            9 days ago

            You are right, however, it’s worth noting most of these materials are highly complex and contain exotic elements. Basically these compounds are not suitable for any real life application in long range energy transfer

        • @[email protected]
          link
          fedilink
          1110 days ago

          There was one team fairly recently that thought they had developed one that got a lot of press, but it turned out to not be true.

          But that was only for that one specific case, it didn’t prove that room temperature superconductors can’t exist in general, there are still other teams working on developing them, and theoretically they could be possible, we just haven’t quite worked out what materials will exhibit superconductivity at room temperature, under what circumstances, and how to make them.

          And we have some materials that come pretty damn close, Lanthanum decahydride can exhibit superconductivity at temperatures just a few degrees colder than some home freezers can manage (although at very high pressures)

    • Brokkr
      link
      fedilink
      1710 days ago

      That’s why we name our ages after the materials within. Material science is the foundation for almost all other physical sciences.

  • @[email protected]
    link
    fedilink
    English
    73
    edit-2
    10 days ago

    There have been constant news articles coming out over the past few years claiming the next big thing in supercapacitor and battery technologies. Very few actually turn out to work practically.

    The most exciting things to happen in the last few years (from an average citizen’s perspective) are the wider availability of sodium ion batteries (I believe some power tools ship with them now?), the continued testing of liquid flow batteries (endless trials starting with the claim that they might be more economic) and the reduction in costs of lithium-ion solid state batteries (probably due to the economics of electric car demand).

    FWIW the distinction between capacitors and batteries gets blurred in the supercapacitor realm. Many of the items sold or researched are blends of chemical (“battery”) and electrostatic (“capacitor”) energy storage. The headline of this particular pushes the misconception that these concepts can’t mix.

    My university login no longer works so I can’t get a copy of the paper itself :( But from the abstract it looks first stage, far from getting excited about:

    This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.

    “holds promise” and “has the potential” are not miscible with “May Be the Beginning of the End for Batteries”.

    • qupada
      link
      fedilink
      2310 days ago

      I’ve been seeing a lot about Sodium-ion just in the past week.

      While they seem to have a huge advantage in being able to charge and discharge at some fairly eye-watering rates, the miserable energy density would seem to limit them to stationary applications, at least for now.

      Perfect for backup power, load shifting, and other power-grid-tied applications though.

      • Liz
        link
        fedilink
        English
        710 days ago

        They’ve also got much better lifespans, being able to cycle many more times with less capacity loss. As they currently stand, they’re much better choices for stationary storage applications. However, I have seen them implemented in power tools and cars for their discharge rates, but it doesn’t hurt that they will stay healthy for longer.

      • @[email protected]
        link
        fedilink
        610 days ago

        I thought one of the main advantages of sodium-ion batteries was price? Great for the applications you listed

      • @[email protected]
        link
        fedilink
        29 days ago

        I mean, I wouldn’t mind a car with “only” 200km range, but that can charge up to full in just 5 minutes. I use my car just for work 99% of the time anyway, the times I need to go somewhere further away I can easily stop midway to charge, get a coffee in the meantime and then be on my way.

        • qupada
          link
          fedilink
          19 days ago

          Unfortunately what’s shipping today seems it would offer maybe half that.

          For the batteries that were announced this past week, a larger-than-refrigerator-sized cabinet held a capacity of around 15kWh.

          Around half the energy density by mass of Lithium batteries, and in the order of a sixth of the density by volume.

          Now if only we could come up with a system where your car could be charged while stopped at traffic lights, we might be onto a winner (:

          Considering however that the price of sodium is around 1-2% that of lithium, I expect we will see significant R&D and those numbers quickly start to improve.

    • @[email protected]
      link
      fedilink
      910 days ago

      |My university login no longer works so I can’t get a copy of the paper itself :(

      Scihub my brother 🙏

      • smpl
        link
        fedilink
        English
        710 days ago

        Sadly Sci-Hub has not received updated articles in several years. Alexandra is waiting for the outcome of the trial in India. I don’t think it depends on what the outcome is, just that the trial needs to be over.

        • Turun
          link
          fedilink
          19 days ago

          We have the internet man, just bug another human and wait a few days to hear back from them.

          Like I know that’s what you are “supposed” to do. But public money public knowledge, I refuse to accept that this is somehow an acceptable state of things.

    • This is fine🔥🐶☕🔥
      link
      fedilink
      410 days ago

      There have been constant news articles coming out over the past few years claiming the next big thing in supercapacitor and battery technologies.

      More like decades. Anyone remembers buckyballs and buckytubes? What happened to that?

      • @[email protected]
        link
        fedilink
        610 days ago

        Nanotubes are still a thing, but most of the hype now seems to be around ‘buckysheets’ (graphene)

        • @[email protected]
          link
          fedilink
          1110 days ago

          There’s an old saying: “Graphene is so versatile it can do anything except leave the laboratory”.

          • @GreyEyedGhost
            link
            310 days ago

            To paraphrase one of society’s less brilliant thinkers, “Who would have thought heathcare advanced materials science could be so hard?”

        • @[email protected]
          link
          fedilink
          210 days ago

          I heard that nanotubes are being used in strengthening various materials. But yeah, not world-changing

    • @[email protected]
      link
      fedilink
      English
      310 days ago

      Yup. How long have we been waiting for graphene batteries to revolutionize technology? About a decade now?

      • @[email protected]
        link
        fedilink
        210 days ago

        …and the same obstacle that faced graphene a decade ago is the same seemingly insurmountable obstacle facing it today.

  • @[email protected]
    link
    fedilink
    7010 days ago

    Serious question: How is this different than all the other sensationalized headlines about some technology that’s gonna change everything, and then you later hear nothing about it?

    • @[email protected]
      link
      fedilink
      3210 days ago

      They are all calling for investors just to figure out it doesn’t scale.

      That’s my assumption at least

    • @GreyEyedGhost
      link
      2010 days ago

      I had a little discussion with a guy complaining about sodium batteries and how you keep hearing these wild claims and then nothing. I did a quick search and saw an article about a $2 billion partnership agreement to work on a pilot plant for sodium batteries. He claimed it was yet another sensational headline and doubted anything would happen from it. Less than a week later I saw an article about a plant in America being announced.

      This stuff is hard. It’s not like Master of Orion where you throw money at a specific research and get access upon completion. Different groups around the world are researching a multitude of different ideas, some related, and after a while a bunch of these ideas are combined and associated and researched, and all of a sudden you have a new product that’s significantly different from what was available before. And then you see incremental improvements for decades, not unlike the internal combustion engine or rechargeable lithium batteries.

      • @[email protected]
        link
        fedilink
        English
        810 days ago

        It’s the same with many infrastructure problems. You hear about some interesting infrastructure project that’s going to transform regional travel, improve transit, make biking/walking safer, or prepare for future natural disasters. Then it takes forever for them to go into place because it takes a long time to plan, do the legal work, and build. But then the infrastructure goes into place and no one thinks twice about the long process behind it.

        • @[email protected]
          link
          fedilink
          49 days ago

          And we should also consider the longevity of these infrastructures. Cities that built their subways in the 19th century are still running them today and are vastly superior in terms of transit abilities than car cities. The population densities of today are unimaginable without central sewers and water infrastructure. Having continent spanning electricity grids are gigantic achievements. All these have shaped our lives for decades and sometimes centuries already and they are set to do so for centuries to come.

      • @[email protected]
        link
        fedilink
        49 days ago

        Sodium batteries look great. They also can use the same manufacturing equipment as lithium batteries. Reducing the capital costs for the product.

    • @[email protected]
      link
      fedilink
      610 days ago

      You are reading about it in Popular Mechanics, so it’s definitely a sensationalized headline, we know that at a minimum.

  • @[email protected]
    link
    fedilink
    6310 days ago

    Although we don’t see it, all of these developments do actually eventually make their way into battery tech. The batteries of today are not the batteries of 2014.

    • @[email protected]
      link
      fedilink
      42
      edit-2
      10 days ago

      If you remember what battery powertools were like in early 2010s, it’s super obvious how far we’ve come. The higher end things like battery powered lawn mowers didn’t exist, and if you wanted real power, you needed a cord.

      • @[email protected]
        link
        fedilink
        910 days ago

        I just wish it was an either/or situation.

        I don’t always need my lawn mower/blower/weed trimmer on batteries. I wish I could easily plug them in when doing light dut work close to the house. But then they couldn’t tie me into their battery ecosystem as easily.

        • qyron
          link
          fedilink
          510 days ago

          I’ve seen a Makita eletric brush cutter with an adapter to plug straight into a standard outlet. The person who bought the machine told me it was more expensive than a battery pack but at least it made the machine usable for longer periods of time when energy is available.

      • @[email protected]
        link
        fedilink
        910 days ago

        I still remember that in the 90s till the 2000s you would get maybe 60 to 90 minutes of battery life out of a new laptop. Then it jumped to 4 or more hours thanks to better batteries, more energy efficient CPUs and displays.

        • @[email protected]
          link
          fedilink
          89 days ago

          Laptops is a bad example. The improvements are moreso the chips and efficient hardware, not the battery

        • @[email protected]
          link
          fedilink
          69 days ago

          I mowed my grass with a corded mower for a decade until the motor bearing finally disintegrated. Cost me $100 and one blade replacement. No small gas engine was ever that reliable for me

  • @[email protected]
    link
    fedilink
    3011 days ago

    It’s not what the article says. Still interesting application of mixed 2D/3D technologies. Always hopeful that these energy developments leave the lab though.

  • @[email protected]
    link
    fedilink
    English
    2811 days ago

    Headline is dumb. If capacitors are better at being batteries than batteries are, they just become the next generation of batteries.

    • @[email protected]
      link
      fedilink
      8211 days ago

      But capacitors aren’t batteries. Batteries store chemical energy. Capacitors store electrical potential energy. Electronically they behave much differently.

      • Em Adespoton
        link
        2511 days ago

        Yes they do… including not holding a charge when the differential drops too far.

        The real wins are in battery-backed capacitors. Charge the caps fast, then let them keep the batteries topped up.

        • @[email protected]
          link
          fedilink
          English
          2010 days ago

          That’s what I do being off-grid. I have my battery bank then a series of Supercaps to essentially act as an on/off ramp//drawbridge and temper quick demands. Kinda like an inverse soft starter so this is suuuuper interesting to me.

      • @[email protected]
        link
        fedilink
        English
        7
        edit-2
        10 days ago

        Only for certain types of capacitors. In practice they can overlap quite a bit, especially with common aluminium electrolytic capacitors (these form & dissolve complex aluminium oxide & hydroxide layers on the plates).

    • davel [he/him]
      link
      fedilink
      English
      2711 days ago

      Headline is not dumb. There are reasons to make a distinction between the two, the most salient one being that capacitors are several orders of magnitude faster to charge and discharge.

    • @[email protected]
      link
      fedilink
      English
      510 days ago

      Capacitors can theoretically charge MUCH faster.

      However the galvanic potential of lithium is as large as is practically possible. The galvanic potential is what really matters for a battery. Capacitors are nowhere near the joules per weight/volume.

  • @[email protected]
    link
    fedilink
    2510 days ago

    I wonder why I even read these articles. If these do turn out to be useful it will eventually make its way into technologies I use or buy near me. I don’t have to hunt them out.

    • @[email protected]
      link
      fedilink
      810 days ago

      I mean the application isn’t exactly arduous but they use capacitors in solar powered watches instead of batteries. They claim you can still get 80% of max voltage after 20 years use.

  • ChaoticNeutralCzech
    link
    fedilink
    23
    edit-2
    10 days ago

    Electrolytic capacitors are closer to batteries than to non-polarized capacitors. Lithium-ion cells in capacitor housings also exist, presumably to evade tariffs and restrictions involved in shipping batteries.

    Super Li-ion battery NSC1015 high ratio Li-ion rechargeable battery 80mah 3C MAX current 10150 1015mm 1pcs

    • @[email protected]
      link
      fedilink
      2610 days ago

      Electrolytic capacitors use the chemistry to make a very high dielectric allowing the plates to get very close and increase the capacitance and decrease the size.

      A cell in a battery is a capacitor then converts the charge on the plates into chemical energy and vice versa allowing much more energy storage and a flat operating range as the plates charge is replenished by the chemical reaction.

      This article doesn’t go into details but it sounds like the breakthrough is a much better dialectic then storing energy in a chemical reaction.

    • @[email protected]
      link
      fedilink
      49 days ago

      They’re more of a hybrid technology. They have some great applications.

      Like temporary storage when using regen from a car. They can buffer the energy and help with a rapid acceleration.

      Dash cam in a car. They can charge the cap and in the event in a malfunction / event. The camera can continue to record.

      Solar lamps. Charge during the day. Release energy during the night.

      They’re poor at long term storage. Great at fast and temp storage.

  • @[email protected]
    link
    fedilink
    English
    179 days ago

    There are no absolute numbers in here. How much charge can it hold? How does that compare to an AAA battery? How long can it hold the charge and how does it compare? What dimensions would it need to have to store as much as a AAA battery? What’s the current projected price?

    Anti Commercial-AI license

  • @[email protected]
    link
    fedilink
    139 days ago

    I can’t wait to see this technology in motorcycles and micro mobility vehicles. It will be a mushroom in Mario Kart IRL. And imagine this tech on drag bikes/cars

    • @[email protected]
      link
      fedilink
      39 days ago

      I wanna see some even more insane FPV drones. theres always some battery breakthrough though, so I don’t wanna get my hopes up.

  • deaf_fish
    link
    fedilink
    1210 days ago

    I wonder if we will get to a point where capacitor batteries will be too good.

    Can you image a small issue leading to an entire instantaneous energy dump of a large capacity capacitor while on an airplane?

    Make me wonder if we will limit how fast a capacitor can discharge in some consumer goods.

  • Gormadt
    link
    fedilink
    811 days ago

    Hell yeah that’s freaking awesome

    I hope to see these become popular someday and with that kind of increase they’re likely to get a shit ton of funding