Scientists from South Korea discover superconductor that functions at room temperature, ambient pressure::For the first time in the world, we succeeded in synthesizing the room-temperature superconductor ($T_c \ge 400$ K, 127$^\circ$C) working at ambient pressure with a modified lead-apatite (LK-99) structure. The superconductivity of LK-99 is proved with the Critical temperature ($T_c$), Zero-resistivity, Critical current ($I_c$), Critical magnetic field ($H_c$), and the Meissner effect. The superconductivity of LK-99 originates from minute structural distortion by a slight volume shrinkage (0.48 %), not by external factors such as temperature and pressure. The shrinkage is caused by Cu$^{2+}$ substitution of Pb$^{2+}$(2) ions in the insulating network of Pb(2)-phosphate and it generates the stress. It concurrently transfers to Pb(1) of the cylindrical column resulting in distortion of the cylindrical column interface, which creates superconducting quantum wells (SQWs) in the interface. The heat capacity results indicated that the new model is suitable for explaining the superconductivity of LK-99. The unique structure of LK-99 that allows the minute distorted structure to be maintained in the interfaces is the most important factor that LK-99 maintains and exhibits superconductivity at room temperatures and ambient pressure.
I know nothing about tech, what would a room temp superconducter be able to do?
Actual hoverboards, finally.
Transmit basically unlimited electricity over a tiny conductor without losses. You could produce (solar) energy in the southern hemisphere and send it north during northern winter through a small wire.
Losslessly transporting energy over great distances. (assuming the material can reasonably be made in great quantities).
We could put up a bunch of solar panels in sparsely populated areas, and transport the energy to densely populated areas. (sahara -> Europe comes to mind).
Not these though, as the paper says they have very low saturated current loads.
So it won’t pass a lot of usable power any long distance. Which is a weird thing to admit if you’re faking a paper.
I still smell bullshit, but usually fake papers sound like they’ve discovered the second coming of Christ, they don’t admit huge limitations to their “product”.
Maglev trains is one I’m excited about. But they are a holy grail in physics. They have a huge range of uses.
Just look at these quantum locking stuff. Imagine what manner of applications would be made possible if we can use it in our daily life without having to lug around liquid nitrogen to cool down the superconductor.
Pocket quantum computer
Transport electricity with no losses (no heat). Very interesting.