That’s a super interesting question. The most recent supernova in our galaxy was Kepler’s Star in the early 1600s. However, that supernova was over 20,000 lightyears away. This one will be over 33 times closer and, assuming a similar luminosity of the explosion, 1100 times brighter (due to 1/r^(2))
Kepler’s Supernova had an apparent magnitude of about -2.5, so Betelgeuse’s supernova will be about -5.5 (According to wikipedia, it’s expected to be -12.4) For reference, the moon is -12.7, and the sun is -27. So it will be a bright boy.
I do not know if wildlife reacted much to the Kepler Supernova, but it is possible. You might be able to find records on the fact if you go digging.
That’s a super interesting question. The most recent supernova in our galaxy was Kepler’s Star in the early 1600s. However, that supernova was over 20,000 lightyears away. This one will be over 33 times closer and, assuming a similar luminosity of the explosion, 1100 times brighter (due to 1/r^(2))
Kepler’s Supernova had an apparent magnitude of about -2.5, so Betelgeuse’s supernova will be about
-5.5(According to wikipedia, it’s expected to be -12.4) For reference, the moon is -12.7, and the sun is -27. So it will be a bright boy.I do not know if wildlife reacted much to the Kepler Supernova, but it is possible. You might be able to find records on the fact if you go digging.
Thanks for the explanation, it is very clear. I am ready for Moon 2.0