Paper & Examples

“Universal and Transferable Adversarial Attacks on Aligned Language Models.” (https://llm-attacks.org/)

Summary

  • Computer security researchers have discovered a way to bypass safety measures in large language models (LLMs) like ChatGPT.
  • Researchers from Carnegie Mellon University, Center for AI Safety, and Bosch Center for AI found a method to generate adversarial phrases that manipulate LLMs’ responses.
  • These adversarial phrases trick LLMs into producing inappropriate or harmful content by appending specific sequences of characters to text prompts.
  • Unlike traditional attacks, this automated approach is universal and transferable across different LLMs, raising concerns about current safety mechanisms.
  • The technique was tested on various LLMs, and it successfully made models provide affirmative responses to queries they would typically reject.
  • Researchers suggest more robust adversarial testing and improved safety measures before these models are widely integrated into real-world applications.
  • itsgallus@beehaw.org
    link
    fedilink
    English
    arrow-up
    4
    ·
    1 year ago

    Good point! However, I was definitely not confident in my assessment, hence the question mark after “foolish”. I guess seeing all these “A.I. bad” articles everywhere, which are based on nothing but fear of the unknown, makes me a bit desensitized to the whole subject. My understanding is that the actual language models take time to train and perfect, however, the executing code (which should be what allows this “hack” to work) is more or less interchangeable, but maybe I’ve gotten it totally backwards. If so, please forgive my ignorance.

    • SkepticalButOpenMinded
      link
      fedilink
      English
      arrow-up
      10
      ·
      1 year ago

      I don’t mean to pick on you, but I also don’t think “AI bad” articles are just based on fear of the unknown. Some of them are, but there are also reasonable concerns with all this, and I believe we will need strong and attentive regulation as we continue.

      By analogy, people who opposed car culture in the 50s and 60s were seen as fear mongers who just opposed “progress”, but they turned out to be right. Cars don’t scale, they’re an environmental disaster, the most expensive and dangerous form of transportation possible, and we’ve completely redesigned our society so that now it’s extremely hard to reverse. We should have been more cautious.

      The problems raised by these researchers may be an easy fix (disallow these specific tokens), or it may be surprisingly difficult to fix, or indicative of a bigger problem, and therefore worth worrying about. I’m concerned that society is a bit blasé about the risks.

      • itsgallus@beehaw.org
        link
        fedilink
        English
        arrow-up
        4
        ·
        1 year ago

        Oh, I’m not saying there aren’t innate risks. You’re bringing up great points, and I agree we mustn’t throw caution to the wind. This is slightly besides the point of my initial comment, though, where I was merely stating my belief that the “hack” described in the OP might be a non issue in a couple of years. But you are right. Again, I’m sorry about my ignorance. I didn’t mean to start an argument. It’s great hearing other points of view, though.