• 0 Posts
  • 56 Comments
Joined 2 years ago
cake
Cake day: June 19th, 2023

help-circle

  • Neutron stars are the most compact form of matter that we know about; they’re even denser than the nucleus of an atom.

    Neutrons, protons and electrons are fermions, meaning they must obey the Pauli exclusion principle. No two neutrons (or protons or electrons) can be in the same quantum mechanical state. If you take ordinary star matter (plasma made of dissociated protons and electrons) and squeeze it, eventually the electrons will nearly overlap in their states. You’d have two electrons with nearly the same energy, spin and location. They cannot overlap though, so this creates a repulsive force that prevents the matter from further compression; this is called the electron degeneracy pressure.

    If the compressive force overcomes this pressure, then the electrons can capture on the protons to form neutrons. Neutrons and protons also have degeneracy pressures, but they can be packed much more densely than electrons. This is because their wavelength is shorter. The wavelength of a massive particle is inversely proportional to its mass, and protons and electrons are about 2000 times the mass of electrons. So compressed ordinary matter will inevitably become pure neutrons, simply because this is the most compact form.

    A pure electron or pure proton star wouldn’t be as compact because both are charged particles so there would be Coulomb repulsion (this isn’t an issue in ordinary matter since the number of electrons and protons is roughly equal). You’d also need to somehow separate the electrons from the protons, and this isn’t a process that would naturally occur in a collapsing star.


  • They would die immediately.

    Breaking atomic and molecular bonds is what ionizing radiation such as gamma rays or neutrons does to a human body, so this scenario would be sort of like an extreme, unrealistically high dose of radiation.

    Immediately after all bonds are broken, atoms would react and start to form new bonds. In some cases these bonds would reform correctly- for example, water being remade as H2O. In many cases alternative bonds would form which could make substances incompatible with life- say H2O2, aka hydrogen peroxide. Basic cellular and nerve function wouldn’t work, hence the instant death.












  • how people very knowledgeable on the current paradigm cannot see (most of times historicaly) that a paradigm shift is about to happen ?

    I’m not sure I’d agree with that assessment. Generally a new model or understanding of physics arises because of known shortcomings in the current model. Quantum physics is the classic example that resolved a number of open problems at the time: the ultraviolet catastrophe in black body radiation, the photoelectric effect, and the interference pattern of the double slit experiment, among others. In the years leading up to the development of quantum theory, it was clear to everyone active in physics that something was missing from the current understanding of Newtonian/classical physics. Obviously it wasn’t clear what the solution was until it came about, but it was obvious that a shift was coming.

    The same thing happened again with electroweak unification%20and%20the%20weak%20interaction.) and the standard model of particle physics. There were known problems with the previous standard model Lagrangian, but it took a unique mathematical approach to resolve many of them.

    Generally research focuses on things that are unknown or can’t be explained by our current understanding of physics. The review article you linked, for example, details open questions and contradictory observations/predictions in the state of the art.




  • There isn’t a link in your post, but it looks like you’re referring to this preprint. The article has been published in a peer reviewed journal paywall warning.

    This is a review article, so it isn’t proposing anything new and is instead giving a summary of the current state of the field. These sorts of articles are typically written by someone who is deeply familiar with the subject. They’re also super useful if you’re learning about a new area - think of them as a short, relatively up-to-date textbook.

    I’m not sure how you’re interpreting this review as an alternative to the standard model of cosmology and the Big Bang. Everything is pretty standard quantum field theory. The only mention of the CMB is in regards to the possibility that gravitons in the early universe would leave detectable signatures (anisotropies and polarization). They aren’t proposing an alternative production mechanism for the CMB.