The sun is not yellow or orange as we see in books and movies. It emits all the colours in the visible spectrum (also in other spectrums as well) making it white!

  • mvirts@lemmy.world
    link
    fedilink
    English
    arrow-up
    63
    arrow-down
    5
    ·
    1 year ago

    White is defined by the color of the sun. Since we evolved within its light we of course see the distribution of wavelengths that make it down to Earth’s surface as white. Even if the sun was always orange, we would see that as white instead.

    • IWantToFuckSpez@kbin.social
      link
      fedilink
      arrow-up
      8
      arrow-down
      2
      ·
      edit-2
      1 year ago

      Do you have a source for that claim? There is no way we can validate that without sending humans to another solar system. And wait thousands of years.

      • killeronthecorner@lemmy.world
        link
        fedilink
        English
        arrow-up
        30
        ·
        1 year ago

        Because our atmosphere causes “scattering” of hues in the highest frequencies. This is the same reason the sky appears blue.

        • saltesc@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          arrow-down
          31
          ·
          edit-2
          1 year ago

          Could also be redshift too. I don’t know enough about it to know if we’d notice it over such a short distance and of a constant source, though. Definitely noticeable as reciprocity failure during long exposures in photography.

          • Brainsploosh@lemmy.world
            link
            fedilink
            English
            arrow-up
            16
            ·
            1 year ago

            No, that’s not at all what redshift is.

            And neither redshift nor dopplershift would have that much effect on light at the speeds we’re talking about.

            Besides the sun’s color on earth it’s not a shift of wavelengths, it’s a subtraction of wavelengths, as you easily can see in a spectrogram.

          • slazer2au@lemmy.world
            link
            fedilink
            English
            arrow-up
            4
            ·
            1 year ago

            Do we experience Doppler shift with our own sun? I would assume as we are in a stable orbit we wouldnt

            • my_hat_stinks@programming.dev
              link
              fedilink
              English
              arrow-up
              6
              ·
              1 year ago

              Strictly speaking since our orbit isn’t a perfect circle we do move towards and away from the sun, so there will be some level of redshift. At those speeds there’s really no chance of seeing it without specialised tools, in the same way you don’t see redshift from a car driving past you.

      • morhp@lemmy.wtf
        link
        fedilink
        English
        arrow-up
        13
        ·
        1 year ago

        Blue light gets scattered more by the atmosphere. So less blue light is received directly in a straight line from the sun and more is reflected from other parts of the sky. That’s also why the sky looks blue in the day and why the evening sky looks red (if the sun is very low during the evening, the blue light can’t reach you because it scattered so much due to the very long shallow way through the atmosphere)

      • DeusHircus@lemmy.zip
        link
        fedilink
        English
        arrow-up
        5
        ·
        1 year ago

        During the day it’s white, but it’s also overhead and blindingly bright so we don’t spend much time looking at it. As it gets closer to the horizon Rayleigh scattering begins filtering out the bluer light and the sun becomes yellow, then orange, then red. It also gets closer to our eyeline and becomes mildly safer to look at so we look at it a lot more. This in turn leads us to believe it’s always yellow

  • Annoyed_🦀 @monyet.cc
    link
    fedilink
    English
    arrow-up
    40
    ·
    edit-2
    1 year ago

    It’s yellow or orange due to the filter from our ozone/atmosphere and camera. It’s also much more interesting to depict it as yellow or orange and not a white spot in the sky. When you stare at the sun on the equator and at 12pm, it’s white, and then it will turn black because you’ll be blinded by it.

    • rhsJack@lemmy.world
      link
      fedilink
      English
      arrow-up
      4
      ·
      1 year ago

      Better to have seen the sun for what it truly is, even for a moment, and be blind forever. Never seeing the birth of your child. Or your bride/groom on your wedding day. Or your peers’ celebration of your accomplishments. Because you are blind. After staring at the sun for a few seconds. All worth it. *gets up **immediately walks into door frame. Corrects himself. Walks out door like a hero.

  • Psythik@lemm.ee
    link
    fedilink
    English
    arrow-up
    11
    arrow-down
    1
    ·
    1 year ago

    Of course it is. If it wasn’t, everything outside would be tinted.

    • Kushan@lemmy.world
      link
      fedilink
      English
      arrow-up
      10
      arrow-down
      1
      ·
      1 year ago

      I think the point of the article is that the sun gives out all wavelengths and just because one is higher doesn’t change the fact that it emits all colours.

  • potate
    link
    fedilink
    English
    arrow-up
    3
    ·
    1 year ago

    Mind sorta blown - such a great explanation.

    • rhsJack@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      arrow-down
      4
      ·
      1 year ago

      Well, someday science is going to make new discoveries and prove this is all wrong. It’s like the coffee thing. Is it good for you or is it bad for you or…it’s just dirty water and we can all go about our lives. Personally, my magic cloud god tells me they put it there to give us light and warmth. And turns it off to save electricity. Which is a good habit if you ask me. Follow my imaginary Hebraic friend and save on your bills.

  • BOMBS@lemmy.world
    link
    fedilink
    English
    arrow-up
    1
    ·
    1 year ago

    Why are the graphs for brightness as a function of wavelength and frequency not exact opposites? I thought that wavelength and frequency for light had an exact inverse relationship.