It sounds like they’re tying the effect of attacks to the actual fine detail game textures/materials, which I guess are only available on the GPU? It’s a weird thing to do and a bad description of it IMO, but that’s what I got from that summary. It wouldn’t be anywhere near as fast as normal hitscan would be on the CPU, and it also takes GPU time which generally is more limited with the thread count on modern processors being what it is.
Since there is probably only 1 bullet shot most of the time on any given frame, the minimum size of a dispatch on the GPU is usually 32-64 cores (out of maybe 1k-20k), just to calculate this one singular bullet with a single core. GPU cores are also much slower than CPU cores, so clearly the only possible reason to do this is if the data needed literally only exists on the GPU, which it sounds like it does in this case. You would also first have to transfer that there was a shot taken to the GPU, which then would have to transfer that data back to the CPU, coming with a small amount of latency both ways.
This also only makes sense if you already use raytracing elsewhere, because you generally need a BVH for raytracing and these are expensive to build.
Although this is using raytracing, the only reason not to support cards without hardware raytracing is that it would take more effort to do so (as you would have to maintain both a normal raytracer and a DXR version)
It sounds like they’re tying the effect of attacks to the actual fine detail game textures/materials, which I guess are only available on the GPU? It’s a weird thing to do and a bad description of it IMO, but that’s what I got from that summary. It wouldn’t be anywhere near as fast as normal hitscan would be on the CPU, and it also takes GPU time which generally is more limited with the thread count on modern processors being what it is.
Since there is probably only 1 bullet shot most of the time on any given frame, the minimum size of a dispatch on the GPU is usually 32-64 cores (out of maybe 1k-20k), just to calculate this one singular bullet with a single core. GPU cores are also much slower than CPU cores, so clearly the only possible reason to do this is if the data needed literally only exists on the GPU, which it sounds like it does in this case. You would also first have to transfer that there was a shot taken to the GPU, which then would have to transfer that data back to the CPU, coming with a small amount of latency both ways.
This also only makes sense if you already use raytracing elsewhere, because you generally need a BVH for raytracing and these are expensive to build.
Although this is using raytracing, the only reason not to support cards without hardware raytracing is that it would take more effort to do so (as you would have to maintain both a normal raytracer and a DXR version)