• perviouslyiner@lemmy.world
    link
    fedilink
    arrow-up
    23
    arrow-down
    9
    ·
    edit-2
    12 hours ago

    Seems excessive to convert everything to rust when you can use std::shared_ptr and std::weak_ptr to eliminate the memory safety issue?

    • arendjr@programming.devOP
      link
      fedilink
      arrow-up
      21
      ·
      edit-2
      8 hours ago

      Using smart pointers doesn’t eliminate the memory safety issue, it merely addresses one aspect of it. Even with smart pointers, nothing is preventing you from passing references and using them after they’re freed.

      • refalo@programming.dev
        link
        fedilink
        arrow-up
        2
        arrow-down
        4
        ·
        7 hours ago

        To be fair, it’s entirely possible to make the same and very similar mistakes in Rust, too.

        • GetOffMyLan@programming.dev
          link
          fedilink
          arrow-up
          2
          ·
          edit-2
          4 hours ago

          I’m fairly sure use after free isn’t possible unless you explicitly use unsafe code right?

          It’s compiler enforced is the point.

    • psycotica0
      link
      fedilink
      arrow-up
      9
      ·
      11 hours ago

      I get what you’re saying, but I think the issue with optional memory safety features is that it’s hard to be sure you’re using it in all the places and hard to maintain that when someone can add a new allocation in the future, etc. It’s certainly doable, and maybe some static analysis tools out there can prove it’s all okay.

      Whereas with Rust, it’s built from the ground up to prove exactly that, plus other things like no memory being shared between threads by accident etc. Rust makes it difficult and obvious to do the wrong thing, rather than that being the default.

    • magic_lobster_party@fedia.io
      link
      fedilink
      arrow-up
      6
      ·
      10 hours ago

      From the original document:

      Software manufacturers should build products in a manner that systematically prevents the introduction of memory safety vulnerabilities, such as by using a memory safe language or hardware capabilities that prevent memory safety vulnerabilities. Additionally, software manufacturers should publish a memory safety roadmap by January 1, 2026.

      My interpretation is that smart pointers are allowed, as long it’s systematically enforced. Switching to a memory safe language is just one example.