Day 16: The Floor Will Be Lava

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  • lwhjp@lemmy.sdf.org
    link
    fedilink
    arrow-up
    2
    ·
    1 year ago

    Haskell

    A pretty by-the-book “walk all paths” algorithm. This could be made a lot faster with some caching.

    Solution
    import Control.Monad
    import Data.Array.Unboxed (UArray)
    import qualified Data.Array.Unboxed as A
    import Data.Foldable
    import Data.Set (Set)
    import qualified Data.Set as Set
    
    type Pos = (Int, Int)
    
    readInput :: String -> UArray Pos Char
    readInput s =
      let rows = lines s
       in A.listArray ((1, 1), (length rows, length $ head rows)) $ concat rows
    
    energized :: (Pos, Pos) -> UArray Pos Char -> Set Pos
    energized start grid = go Set.empty $ Set.singleton start
      where
        go seen beams
          | Set.null beams = Set.map fst seen
          | otherwise =
              let seen' = seen `Set.union` beams
                  beams' = Set.fromList $ do
                    ((y, x), (dy, dx)) <- toList beams
                    d'@(dy', dx') <- case grid A.! (y, x) of
                      '/' -> [(-dx, -dy)]
                      '\\' -> [(dx, dy)]
                      '|' | dx /= 0 -> [(-1, 0), (1, 0)]
                      '-' | dy /= 0 -> [(0, -1), (0, 1)]
                      _ -> [(dy, dx)]
                    let p' = (y + dy', x + dx')
                        beam' = (p', d')
                    guard $ A.inRange (A.bounds grid) p'
                    guard $ beam' `Set.notMember` seen'
                    return beam'
               in go seen' beams'
    
    part1 = Set.size . energized ((1, 1), (0, 1))
    
    part2 input = maximum counts
      where
        (_, (h, w)) = A.bounds input
        starts =
          concat $
            [[((y, 1), (0, 1)), ((y, w), (0, -1))] | y <- [1 .. h]]
              ++ [[((1, x), (1, 0)), ((h, x), (-1, 0))] | x <- [1 .. w]]
        counts = map (\s -> Set.size $ energized s input) starts
    
    main = do
      input <- readInput <$> readFile "input16"
      print $ part1 input
      print $ part2 input
    

    A whopping 130.050 line-seconds!