Testing a 7 antenna element Spidar PulseEkko 250 rig (6 channels of 60cm separation data). Lithogen Inc. built this custom cart for a client as an R&D projec...
Shameless OC. This is my video of a test I did for an R&D project – the custom cart and GPR rig.
That’s a really neat system. If I were to make something like that I’d do the same, just minus all the radio stuff, cause I don’t know much about them there waves.
What do you/other users look for the in the ground?
Also thanks for explaining
With this system, anything that radio waves bounce off of. Voids, soil layering, metal objects, utilities, the water table, bedrock, ice, tree root systems, etc. So it’s a bit like a fish finder in its output, and it gives you targets of interest. If your target forms a nice linear stripe across your map, it’s probably a utility. If the targets are arranged in a nice grid in a historical graveyard, they’re probably graves. Etc.
Interesting that it can pick up all those different things. I’m guessing you can tune it for a specific thing to bounce off.
But I’m still confused as who uses it. Is it people about to dig for utilities, or archeological work or looking for oil in the ground?
You can’t really tune it for any of those things. It’s much like medical imaging-- you get an unknown blob. In medical imaging, you get a sequence like “this blob is shaped like a bone, so it is almost certainly a bone, but this blob is unknown so we’re ordering a biopsy”. Here you’re effectively do the same, but the patient is the ground.
Like medical imaging, you can sometimes choose different methods (X-ray, CT scan, ultrasound, MRI, etc.) – the different methods are sensitive to different physical contrasts. So if you do multiple scans with different methods, you can improve your interpretations. Likewise, with geophysics, you can use radar, seismic (sound waves), magnetics, even MRI (also known as nuclear magnetic resonance in the physics community). Basically, you need auxillary data to start distinguishing between things well. Sometimes that auxillary data is “I’m expecting to find a storage tank here due to historical records, and sure enough, I find a shape here where it is supposed to be, so let’s assume it is the tank.”
Ah that makes good sense. In my mind I’m just gonna imagine its a big cool gound x-ray cannon. I can imagine it’s good fun to have a look into the ground and see what’s there. Thanks for explaining it to me. I’m a much more mechanical person
That’s a really neat system. If I were to make something like that I’d do the same, just minus all the radio stuff, cause I don’t know much about them there waves. What do you/other users look for the in the ground? Also thanks for explaining
With this system, anything that radio waves bounce off of. Voids, soil layering, metal objects, utilities, the water table, bedrock, ice, tree root systems, etc. So it’s a bit like a fish finder in its output, and it gives you targets of interest. If your target forms a nice linear stripe across your map, it’s probably a utility. If the targets are arranged in a nice grid in a historical graveyard, they’re probably graves. Etc.
Interesting that it can pick up all those different things. I’m guessing you can tune it for a specific thing to bounce off. But I’m still confused as who uses it. Is it people about to dig for utilities, or archeological work or looking for oil in the ground?
You can’t really tune it for any of those things. It’s much like medical imaging-- you get an unknown blob. In medical imaging, you get a sequence like “this blob is shaped like a bone, so it is almost certainly a bone, but this blob is unknown so we’re ordering a biopsy”. Here you’re effectively do the same, but the patient is the ground.
Like medical imaging, you can sometimes choose different methods (X-ray, CT scan, ultrasound, MRI, etc.) – the different methods are sensitive to different physical contrasts. So if you do multiple scans with different methods, you can improve your interpretations. Likewise, with geophysics, you can use radar, seismic (sound waves), magnetics, even MRI (also known as nuclear magnetic resonance in the physics community). Basically, you need auxillary data to start distinguishing between things well. Sometimes that auxillary data is “I’m expecting to find a storage tank here due to historical records, and sure enough, I find a shape here where it is supposed to be, so let’s assume it is the tank.”
Ah that makes good sense. In my mind I’m just gonna imagine its a big cool gound x-ray cannon. I can imagine it’s good fun to have a look into the ground and see what’s there. Thanks for explaining it to me. I’m a much more mechanical person