Here is a fairly robust way to ensure a drive safe to put into service. I have tested this before and caught drives that would have failed shortly after put into prod, and some that would of after it was more than half full.

  1. Check S.M.A.R.T Info: Confirm no (0) Seek Error Rate, Read Error Rate, Reallocated Sector Count, Uncorrectable Sector Count

  2. Run Short S.M.A.R.T test

  3. Repeat Step 1

  4. Run Conveyance S.M.A.R.T test

  5. Repeat Step 1

  6. Run Destructive Badblocks test (read and write)

  7. Repeat Step 1

  8. Perform a FULL Format (Overwrite with Zeros)

  9. Repeat Step 1

  10. Run Extended S.M.A.R.T test

  11. Repeat Step 1

Return the drive if either of the following is true:

A) The formatting speed drops below 80MB/s by more than 10MB/s (my defective one was ~40MB/s from first power-on)

B) The S.M.A.R.T tests show error count increasing at any step

It is also highly advisable to stagger the testing (and repeat some) if you plan on using multiple drives in a pool/raid config. This way the wear on the drives differ, to reduce the likelihood of them failing at the same time. For example, I re-ran either the Full format or badblocks test on some of the drives so some drives have 48 hours of testing, some have 72, some have 96. This way, the chances of a multiple drive failures during rebuild is lower.

    • GolemancerVekk@alien.topB
      link
      fedilink
      English
      arrow-up
      1
      ·
      7 months ago

      Yeah I was under the impression these two attributes vary so wildly between vendors that they’re basically void of meaning by now.