• evranch
    link
    fedilink
    English
    arrow-up
    6
    arrow-down
    1
    ·
    1 year ago

    What are the emissions, aside from waste heat?

    • CookieJarObserver@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      10
      arrow-down
      2
      ·
      1 year ago

      The production of the uranium fuel, the gigantic building itself, the transport (the fule gets shipped around the world), the storage after its depleted.

      Its definitely better than any Combustion fuels, but not at all better than actual renewables.

      • Womble@lemmy.world
        link
        fedilink
        English
        arrow-up
        12
        arrow-down
        4
        ·
        edit-2
        1 year ago

        if you want to be like that nothing is. Solar requires vast amounts of rare earths to be mined and wind requires huge amount of unrecylable blades and generators to be produced. On total lifecyle damage to the environment all three are very low but non zero.

        • CookieJarObserver@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          9
          arrow-down
          2
          ·
          1 year ago

          Solar requires vast amounts of rare earths to be mined

          Not true, the newest solar panels don’t need rare earths at that scale.

          and wind requires huge amount of unrecylable blades and generators to be produced.

          Both are recyclable and even if they were not they are not radioactive, poisonous or otherwise hazardous… The blades are from a Artificial resin And glas fiber and the generators are from normal industrial materials like iron aluminum and copper.

          Over all actual renewables are much more environmentally friendly and have less emissions. But yes they are also not absolutely zero emission (even though that being possible)

          • Womble@lemmy.world
            link
            fedilink
            English
            arrow-up
            5
            arrow-down
            8
            ·
            1 year ago

            Huh, i thought they did require rare earths in construction, but apparently not. They do require silicon wafers boron and phosporus, and small instalations typically come with large li-ion bateries which clearly do require lithium. But the panels themselves dont. Still my point stand that ANY method of generation requires industrial activity which has downsides, pretending nuear is unique in this is dishonest.

            Please dont call people trolls just because you disagree with them, this isnt reddit.

            • schroedingershat@lemmy.world
              link
              fedilink
              English
              arrow-up
              6
              arrow-down
              4
              ·
              1 year ago

              Lithiun is also not a rare earth, and is not required (doubly so in sweden). Even if you do choose to use it, you need it in significantly smaller quantities than uranium, and mining it is significantly lower impact.

              The mining impact of PV and onshore wind is acceptably small (although should still be reduced further), the orders of magnitude worse impact of digging up or leeching uranium ore with lower energy density than coal, poisoning indiginous communities with the milling waste and then never cleaning it up is not.

              You’re sharing praeger U propaganda talking points. This is trolling.

            • Aesthesiaphilia@kbin.social
              link
              fedilink
              arrow-up
              1
              ·
              1 year ago

              iirc earlier solar panel construction required rare earths

              In the last 10-15 years they’ve moved to more abundant materials

      • evranch
        link
        fedilink
        English
        arrow-up
        6
        arrow-down
        1
        ·
        1 year ago

        When considering these externalities for nuclear, you have to do the same for renewables as well. i.e. scrap turbine blades, concrete in dams, weathered PV panels, land use taken up by panels and turbines.

        Remember that the materials used in most renewable generation are also shipped around the world and many have very dirty refining processes.

        I’m a firm renewable energy supporter but you have to be fair to both processes.

        • CookieJarObserver@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          5
          arrow-down
          2
          ·
          1 year ago

          You neglect the problem that the stuff from a nuclear reactor is literally unusable forever and becomes Special waste while the remains of renewables are recyclable, yes even turbine blades, there is just not enough market for it to attract a business so far, that will change of course with time, also the stuff is not toxic or radioactive…

          Remember that the materials used in most renewable generation are also shipped around the world and many have very dirty refining processes.

          Depends, newer version of the stuff don’t need rare earths, or much less, meaning the dirtiest of it falls out of the equation.

          I am fair, nuclear is just not future proof for large scale usage. It also takes to long to be “effective” 10 years to build one powerplant, and is waaaay to expensive. you could build more actually renewables for less money in the same time and the electricity from it is basically free as there are almost no operational costs.

        • schroedingershat@lemmy.world
          link
          fedilink
          English
          arrow-up
          3
          arrow-down
          1
          ·
          edit-2
          1 year ago

          Okay.

          Make a PV system out of a strict subset of the materials in the reactor.

          Put the PV system over top of Inkai mine.

          Get more power than the uranium from the mine would produce for longer.

          The 40 year guaranteed lifetime of the panels is longer than the 30 year lifetime of the average nuclear plant at shutdown.

          Your materials can be recycled after.

          The ground around the mine isn’t poisoned with heavy metals permanently,

          This all assuming everything goes perfectly for the nuclear plant and waste disposal.

      • schroedingershat@lemmy.world
        link
        fedilink
        English
        arrow-up
        3
        arrow-down
        2
        ·
        1 year ago

        The emissions from nuclear are primarily from mining (this is huge in some cases, enough to not consider it as low carbon, or negligible in others), enrichment, conversion, and fuel fabrication (these last three have no trustworthy data, but from the few steps that are public knowledge, are enough to put it higher than PV or wind).

        Transport, and the building are negligible enough they’re not worth considering.

        In either case, it’s largely irrelevant. The main harm is to the local environment of the mines (this is devistating) as well as the main reason the astroturfers come out in force, which is that it delays decarbonization due to being an ineffective use of resources.

            • schroedingershat@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              1 year ago

              Incredibly well quantified emissions that are in total lower than the emissions from mining uranium (except for two or three cherry picked mines which are supposed to be representative), or the emissions from building and decomissioning a nuke if you take real lifetimes and load factors.

                • schroedingershat@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  2
                  ·
                  edit-2
                  1 year ago

                  Most uranium ore is lower energy density than low grade coal. Digging it up with diesel equipment after removing twice as much overburden with explosives in a coal powered country and then milling it with 10s to 100s of litres of sulfuric acid is incredibly dirty. All of the “representative” lifecycle studies use Ranger (which used a specific much cleaner more expensive process only suitable for some specific ores on ore 30-70x as concentrated) or Cigar lake which is 1000-2500x as concentrated.

                  Even after that nuclear is still relatively low carbon, but about 10x a modern wind turbine. It is largely irrelevant (the best llw carbon technology is the one that deploys soonest), but that doesn’t stop the shills constantly lying to try and delay decarbonisation.

      • Aesthesiaphilia@kbin.social
        link
        fedilink
        arrow-up
        2
        arrow-down
        2
        ·
        1 year ago

        Most of those costs are similar for renewables…rather than a building it’s the production and installation of fields of solar panels, for example.

        In both cases I’m pretty sure it’s a negligible fraction of the lifecycle emissions compared to energy generated.

        • CookieJarObserver@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          4
          arrow-down
          1
          ·
          1 year ago

          The problem is reliability, Europe sees more and more droughts building energy facilities that turn useful water into useless steam makes little sens when there are other options.

          Also nuclear makes Sweden dependant on a country thaz exports nuclear fule.

          And for solar the costs are shrinking and shrinking, the newest and most efficient panels don’t even need rare earths anymore and are recyclable. Btw Sweeden would be better suited for Hydroelectric dams and Wind wich have even less such problems.

          • Testnummer37@lemmy.world
            link
            fedilink
            English
            arrow-up
            5
            arrow-down
            2
            ·
            1 year ago

            Might be a problem for landlocked countries like Switzerland or so but all swedish reactors are cooled with sea water which is not in short supply any time soon.

            • CookieJarObserver@sh.itjust.works
              link
              fedilink
              English
              arrow-up
              3
              arrow-down
              2
              ·
              1 year ago

              Seaside reactors have other problems like rising Sea levels… Just putting some wind turbines up would not lead to another Chernobyl when something bad happens…

              • JasSmith@kbin.social
                link
                fedilink
                arrow-up
                5
                arrow-down
                1
                ·
                1 year ago

                Fukushima had structural risks and wasn’t compliant with international standards. Modern reactors don’t carry runaway reaction risks. They just shut down in the event of a power loss. There is zero risk of another Chernobyl with modern reactors.

              • Testnummer37@lemmy.world
                link
                fedilink
                English
                arrow-up
                1
                arrow-down
                2
                ·
                1 year ago

                Easily solved by building them one meter above expected future sea level 😂

                And wind turbines have the problem of needing backup power plants when the wind is not blowing. The whole reason for the energy crisis that europe have right now is because germanys backup plants can’t run as their supplier have their hand full trying to murder their neighbour.

                Wind and solar are great stuff. Puting solar cells on every south facing roff is a no brainer. Hydro- and geothermal powerplants only work where the geography allows it and are in these places also no brainers. But wind is a whole different beast. If you have a good way to save the excess power generated when they are runing then they are super. But right now, outside of repumping back water in to hydro dams, there are no good ways of utilizing it. That leaves at best 50% of a normal country’s power demand to be covered by either fossil fuels or nuclear. Unless you are a climate change denier then that choice is pretty simple. Nuclear is the only viable option if you want to keep the lights on.

          • Aesthesiaphilia@kbin.social
            link
            fedilink
            arrow-up
            2
            ·
            1 year ago

            Sweden?

            Drought?

            Anyway I’m not a civil engineer or geologist or renewable energy engineer or anything, so I won’t pretend to know what the best path is. I’m just hoping they did their studies correctly and are picking the best option.

            But even if they’re not, it’s good they’re moving away from fossil fuels, whichever direction they move in.

            • schroedingershat@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              1 year ago

              Well no, that’s the thing. They’ve replaced moving away from fossil fuels now with promising they’re going to in 2045

      • bouh@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        arrow-down
        4
        ·
        1 year ago

        Oh so exactly like renewables that actually produce more co2 during their life cycle?

      • Aux@lemmy.world
        link
        fedilink
        English
        arrow-up
        3
        arrow-down
        6
        ·
        1 year ago

        Renewables need all of that too plus they generate SHITLOADS of waste.