In the quest for environmental sustainability, the rising demand for electric vehicles and renewable energy technologies has substantially increased the need for efficient lithium extraction methods. Traditional lithium production, relying on geographically concentrated hard-rock ores and salar brines, is associated with considerable energy consumption, greenhouse gas emissions, groundwater depletion and land disturbance, thereby posing notable environmental and supply chain challenges. On the other hand, low-quality brines—such as those found in sedimentary waters, geothermal fluids, oilfield-produced waters, seawater and some salar brines and salt lakes—hold large potential owing to their extensive reserves and widespread geographical distribution. However, extracting lithium from these sources presents technical challenges owing to low lithium concentrations and high magnesium-to-lithium ratios. This Review explores the latest advances and continuing challenges in lithium extraction from these demanding yet promising sources, covering a variety of methods, including precipitation, solvent extraction, sorption, membrane-based separation and electrochemical-based separation. Furthermore, we share perspectives on the future development of lithium extraction technologies, framed within the basic principles of separation processes. The aim is to encourage the development of innovative extraction methods capable of making use of the substantial potential of low-quality brines. Precipitation, solvent extraction, sorption, membrane-based separation and electrochemical-based separation are described as promising methods for extracting lithium from low-quality brines, which have extensive reserves and widespread geographical distributions.
This is an automated archive made by the Lemmit Bot.